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Abstract-In this paper, the effect of internal heating on double diffusive convection in a rotating anisotropic 
porous medium saturated with a viscoelastic fluid,which is heated and salted from below,is studied analytically. 
Linear stability analysis has been performed by using Normal mode technique and nonlinear theory is based on 
minimal representation of Fourier series up to two terms. The modified Darcy model,which includes the time 
derivative and Coriolis terms has been employed in the momentum equation. The effects of Taylor 
number,solute Rayleigh number,internal heat source parameter, diffusivity ratio,relaxation and retardation 
parameters, thermal and mechanical anisotropy parameters on the stationary and oscillatory convection are 
obtained and  shown graphically.  Also,  heat and mass transports have been obtained in terms of the Nusselt 
number and Sherwood number respectively and presented through Figs. 

 

Index Terms-Viscoelastic fluid; Double diffusive convection; Rotation; Internal heat source; Porous media. 

 

1. INTRODUCTION 

Most of the studies in relevant area are mainly dealt 

with isotropic porous media; however there are many 

physical situations where thermal and mechanical 

anisotropy exists in porous matrix, one of such 

examples is our geothermal environment. Anisotropy 

is generally a consequence of preferential orientation 

of asymmetric geometry of porous matrix or fibers and 

is in fact encountered in numerous systems in industry 

and nature, also in artificial porous matrix anisotropy 

can be made deliberately according to applications. 

Srivastava et al. [5] studied the effect of internal 

heating on double diffusive convection in a couple 

stress fluid saturated anisotropic porous medium. 

There is large number of practical situations 

in which convection is driven by internal heat source. 

Internal heat generation arises in many important 

contexts, including reactor safety analyses, metal 

waste that is produced by spent nuclear fuel, fire and 

combustion studies, and the storage of radioactive 

materials. The study concerning internal heat source in 

porous media is provided by Tveitereid [27], 

performing thermal convection in a horizontal porous 

layer with internal heat source. Hill [3] performed 

linear and nonlinear analyses on the double-diffusive 

convection in a porous layer with a concentration 

based internal heat source. Bhadauria et al.[9] studied 

the effect of internal heating on double diffusive 

convection in a couple stress fluid saturated 

anisotropic porous medium. Govender [14] 

investigated the Corioliseffect on the stability of 

centrifugally driven convection in a rotating 

anisotropic porous layer subject to gravity. 

The studies of double diffusive convection in 

porous media plays very significant roles in many 

areas such as in petroleum industry, solidification of 

binary mixture, migration of solutes in water saturated 

soils. Other example includes geophysics system, 

crystal growth, electrochemistry, the migration of 

moisture through air contained in fibrous insulation, 

Earth's oceans, magma chambers etc. The onset of 

thermal instability in a horizontal porous layer was 

first studied extensively by Horton and Rogers [15] 

and Lapwood [18]. However, Nield [28] was first to 

investigate double diffusive generalization of the 

Horton–Rogers–Lapwood problem, performing only 

linear stability analysis. Some other researchers who 

have worked on double diffusive convection in a 

porous medium are Taunton et al.[37], Patil and 

Vaidyanathan [31,32], Griffith [13]. The onset of 

double diffusive convection in a horizontal porous 

layer has been investigated by Rudraiah et al. [34] 

using a weak non-linear theory.  The problem of 

double diffusive convection in a porous media has 

been presented by Ingham and Pop [16], Nield and 

Bejan  [19] and Vafai [39,40], Vadasz[41,42]. The 

study was continued by Poulikakos [30], Travison and 

Bejan [38], Momou [22] etc.  

The study of double diffusive convection in a 

rotating porous media is important due to both, its 

theoretical and practical applications in engineering. 

Some of the important areas of applications in 

engineering include the food and chemical process, 
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solidification and centrifugal casting of metals, 

rotating machinery, petroleum industry and 

biomechanics problems. There are only few studies 

available on double diffusive convection in the 

presence of rotation. Chakrabarti and Gupta [4] have 

analyzed the nonlinear thermohaline convection in a 

rotating porous medium. The effect of rotation on 

linear and nonlinear double diffusive convection in a 

sparsely packed porous medium was studied by 

Rudraiah et.al. [34]. Malashetty et al. [23] studied the 

effect of rotation on the onset of double diffusive 

convection in a Darcy porous medium saturated with 

couple stress fluid. Malashetty and Heera [24, 25] 

studied the effect of rotation on the onset of double 

diffusive convection in a horizontal anisotropic porous 

layer. Gaikwad [12] have done the linear stability 

analysis of double diffusive convection in a horizontal 

sparsely packed rotating anisotropic porous layer in 

presence of Soret effect. Sulochana et.al [10] studied 

the onset of double diffusive convection in a couple 

stress fluid saturated rotating anisotropic porous layer. 

Bhadauria et al. [7] studied cross diffusion convection 

in a Newtonian fluid-saturated rotating porous 

medium. 

The work published on natural convection of 

viscoelastic fluids in porous media is fairly limited. 

Convection in a viscoelastic fluid-saturated sparsely 

packed porous layer is studied by Rudraiah et al. [33, 

35]. Mardones et al. [20, 21] have investigated the 

Rayleigh-Benard convection for stationary convection 

in a binary viscoelastic fluid. Yoon et al. [43, 44], Kim 

et al. [17], and Bertola and Cafaro [6] studied the 

stability of a viscoelastic fluid where an existing 

constitutive model, which is rather simple, was 

employed to examine the effects of relaxation and 

retardation times on the stationary and oscillatory 

convection in a horizontal porous layer heated by a 

constant temperature. Park and Park [29] studied 

Rayleigh-Benard convection of viscoelastic fluids in 

arbitrary finite domains. Convective instabilities in a 

viscoelastic-fluid-saturated porous medium with 

throughflow have been studied by Shivakumara and 

Sureshkumar [36]. Linear and nonlinear stability 

analyses of thermal convection for Oldroyd-B fluids in 

a porous media heated from below has been studied by 

Zhang et al. [45]. Malashetty et al. [26] studied the 

onset of convection in a binary viscoelastic fluid-

saturated porous layer. Kumar and Bhadauria [1] have 

studied non-linear two-dimensional double diffusive 

convection in a rotating porous layer saturated by a 

viscoelastic fluid. Gaikwad et al. [11] performed onset 

of Darcy-Brinkman convection in a binary viscoelastic 

fluid-saturated porous layer with internal heat source. 

Recently Srivastava et al. [2] have studied linear and 

weak nonlinear double diffusive convection in a 

viscoelastic fluid saturated anisotropic porous medium 

with internal heat source.  

 In the present literature, no work is available 

on double diffusive convection in a rotating porous 

layer saturated by a viscoelastic fluid with an internal 

heat source. Therefore, in the present study stability 

analysis of internal heating effect on double diffusive 

convection in a rotating anisotropic porous medium 

saturated with a viscoelastic fluid has been done. 

2. GOVERNING EQUATION 

Consider a viscoelastic fluid saturated porous medium, 

confined between two infinitely extended horizontal 

planes at 0z   and ,z d  heated from below and 

cooled from above. Darcy model has been employed 

in the momentum equation. Further, an internal heat 

source term has been included in the energy equation. 

A Cartesian frame of reference is chosen in such a 

way that the origin lies on the lower plane and the z-

axis as vertical upward. The system is rotating about 

z-axis with a constant angular velocity Ω. An adverse 

temperature gradient is applied across the porous layer 

and the lower and upper planes are kept at temperature 

0T T and 0T , and concentration 
0S S  and 

0S respectively. The physical configuration of the 

model is reported in the Fig.A. 

 
 

Fig .A: Physical configuration of the problem   
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2.1 Basic Solution

 
At this state, the velocity, pressure, temperature and 

density profiles are given by 

0,  ( ),  ( ),  ( ),  ( ).     (7)b b b b bq p p z T T z S S z z     
Substituting Eq. (7) in Eq. (1-4), we get the following 

equations: 
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2.2 Perturbed Equation 

Now, we superimpose finite amplitude perturbations 

on the basic state in the form:  
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The resulting equations are non-dimensionalized using 

the following transformations;  
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The non-dimensionalized equations (on dropping the 
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mechanical anisotropy  parameter. The above system 

will be solved by considering stress free and 

isothermal boundary conditions as given below:  
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The pressure term from Eq. (20) is eliminated by 

taking curl of the momentum equation.  
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3. LINEAR STABILITY ANALYSIS 

Linear equations are 
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Use normal mode technique 
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3.1 Stationary State 

 Now we set 0   in Eq. (31) at the margin of 

stability. The expression of the thermal Rayleigh 

number for stationary mode of convection is found as 

given below: 
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It is important to note that the critical wave number
St

ca a depends on the couple stress parameter and 

Taylor number. In the absence of Taylor number i.e. 
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                                         (33)st

T

a
Ra

a

 


  

which has the critical value 
24   forst

TRa 

  st

ca  are the classical results obtained by Horton 

and Roger [16] and Lapwood [19] for single 

component fluid in porous layer. 

  

3.2 Oscillatory State 

For the oscillatory mode of convection, we set 

ii   in Eq. (27) and clear the complex quantities 

from the denominator, to obtain  

1 2                                   (34)osc

T iRa i    .                                             

where 
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 
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
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For oscillatory mode 2 0  and 0i  , where   

is the oscillatory frequency which is not given for 

brevity. 

We have the necessary expression for oscillatory 

Rayleigh number as:  

1                                                (36)osc

TRa  
 

4. NONLINEAR STABILITY ANALYSIS 

In this section, nonlinear stability has been studied 

using minimal truncated Fourier series. For simplicity, 

we consider only two dimensional rolls, so that all the 

physical quantities are independent of y. We introduce 

the stream function  as ,  = -u w
z x

  

 

, then  

taking curl to eliminate pressure term from Eq.(2), to 

get 
 

2 22 2 2

2 1 12 2 2

2

1
1 1 1

1                                                  (37)   
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S
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 
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It is to be noted that the effect of nonlinearity is to 

distort the temperature and concentration fields 

through the interaction of ,  with  T and S . As a 

result a component of the form  (2 )Sin z will be 

generated. A minimal Fourier series which describes 

the finite amplitude convection is given by

 

0( )sin( )sin( )                              (40)M t ax z 

1 2( )cos( )sin( ) ( )sin(2 )         (41)T M t ax z M t z  

3 4( )cos( )sin( ) ( )sin(2 )     (42)S M t ax z M t z  

where the amplitudes 0 ( )M t , 1( )M t , 2 ( )M t , 

3 ( ),M t 4 ( )M t are functions of time and are to be 

determined. Substituting above expressions in Eqs. 

(37) - (39) and equating the like terms, the following 

set of nonlinear autonomous differential equations is 

obtained
 

0
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Numerical method was used to solve the above 

nonlinear differential equation to find the amplitudes. 

 

4.1 Steady Finite Amplitude Motions

 
For steady state finite amplitude convection, we have 

to set left hand side of the Eq. (43-48) equal to zero. 

 1 0                                  (49)D t 

 

 2 2
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2

4 0 34 0                                  (54)
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 On solving the above equations for the amplitudes, we 

obtain 1 2 3 4, , ,M M M M  in terms of
0M  as
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4.2       Steady Heat And Mass Transports 

In the study of this type problem, quantification of 

heat and mass transport is

  

very important in porous 

media. Let uN and hS be denoted as the rate of heat 

and mass

 

transports per unit for the fluid phase known 

as Nusselt number and Sherwood number 

respectively, defined by

 2
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Substituting 2 ,M
4M in (55a, 55b, 55c, 55d), the 

expressions for 
uN and hS are obtained as 

21 2uN M 
 

41 2 .hS M 
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Fig1. Neutral stability curves for different values of 

different parameter 
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Fig 2. Ocsllatory stability curves for different values 

of different parameter 
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Fig 3.Nusselt number curves for different values of 

different parameter 

 

 

 
 

 

 
 

 

 

 
 

 
 
Fig 4.Sherwood number curves for different values of 

different parameter 

 

 

5. RESULTS AND DISCUSSION 

 

We have studied the effect of internal heat source on 

double diffusive convection in a viscoelastic fluid 

saturated rotating anisotropic porous layer using linear 

and nonlinear stability analyses. In this section, we 

obtain the effects of various parameters in the 

governing equations on the onset of double diffusive 

convection numerically and express them graphically. 

The numerical values of thermal Rayleigh number for 

stationary and oscillatory modes of convection for 

different values of the parameters such as Taylor 

number, relaxation and retardation parameters, solute 



International Journal of Research in Advent Technology, Vol.6, No.12, December 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

3533 

 

Rayleigh number, and parameter are computed, and 

depicted in figures. 

 

Linear Stability 

The marginal stability curves in the   ,TRa a  plane 

for the stationary and oscillatory modes are presented 

through graphs for different values of the parameters. 

Figs 1(a-e) are for stationary mode, while Figs 2(a-h) 

correspond to oscillatory mode of convection. We fix 

the values for the parameters as aT = 30, .5  ,

100SRa  , .3  , 2 .9  , 1 .5  , .9  and 

2iR  , except the varying parameter.  

From Figs 1(a), 2(a), it is observed that on 

increasing the value of internal Rayleigh number ,iR

the critical values of stationary and oscillatory 

Rayleigh number decrease, thus destabilizing the 

system. This shows that the effect of an increment in 

the value of ,iR is to advance the onset of both 

stationary as well as oscillatory modes of convection. 

However, from Figs 1(b), 2(b) for Taylor number ,aT  

Figs 1(c), 2(c) for solutal Rayleigh number ,SRa  

Figs 1(d), 2(d) for thermal anisotropic parameter   

and Figs 1(e), 2(e) for mechanical anisotropic 

parameter , it is observed respectively that on 

increasing the values of , , ,a ST Ra    the critical 

values of stationary and oscillatory Rayleigh numbers 

increase, thus stabilizing the system. This shows that 

the effect of increasing the values of , , ,a ST Ra    

is to delay the onset of stationary and oscillatory 

convection.  

Further, it is found from Figs 2(f, h) that the effect of 

increasing the values of diffusivity ratio  and the 

parameter 2 is to increase the critical value of the 

oscillatory Rayleigh number, thus delaying the onset 

of oscillatory convection. However opposite effect is 

found in Fig 2(g), where an increment in the value of 

parameter 1 decreases the critical value of the 

oscillatory Rayleigh number, thus advancing the onset 

of oscillatory convection.  

 

Nonlinear Stability  

The effects of various parameters on the rate of heat 

and mass transfer are shown in Fig 3 and Fig 4 

respectively. Figs 3(a) and 4(a) show that an 

increment in the value of the internal Rayleigh number 

iR increases the values of both Nusselt number uN

and Sherwood number ,hS  which is due to the fact 

that increasing the value of iR  advances the onset of 

convection.  From Figs 3(b) and 4(b) for Taylor 

number ,aT  Figs 3(c), 4(c) for solute Rayleigh 

number ,SRa  Figs 3(d), 4(d) for diffusivity ratio ,

Figs 3(e), 4(e)  for thermal anisotropic parameter ,  

Figs 3(f), 4(f) for mechanical anisotropic parameter 

, it is observed that on increasing the values of ,aT

,SRa ,  and , the values of both Nusselt number 

uN and Sherwood number hS decrease, thus 

stabilizing the system. 

 

6. CONCLUSIONS 

In this paper, internal heating effect on 

double diffusive convection in a viscoelastic fluid 

saturated rotating anisotropic porous layer, which is 

heated and salted from below, is investigated. The 

problem has been solved analytically, performing 

linear and nonlinear analyses. Linear analysis is done 

using normal mode technique. Following conclusions 

are drawn: 

1) The Taylor number aT , mechanical 

anisotropic parameter , solute Rayleigh 

number 
SRa and thermal anisotropic 

parameter  has a stabilizing effect on the 

both stationary and oscillatory convection. 

2)  The internal heat parameter iR  destabilizes 

the system in the stationary and oscillatory 

system. 

3)  The effects of diffusivity ratio and 

retardation parameter 2 have stabilizing 

effect on the oscillatory convection. 

4) The relaxation parameter 1 has a 

destabilizing effect on the oscillatory 

convection. 

5) The increasing the value of internal Rayleigh  

number iR then increase the value of Nusselt 

number  uN i.e. increased heat transfer but 

increasing the value of mechanical 

anisotropic parameter  ,Taylor number aT

,solute Rayleigh  number ,SRa diffusivity 

ratio   and thermal anisotropic parameter 

decreases the value ofNusselt number  .uN  

6) Mass transfer  that is the value of Sherwood 

number increases on increasing the value of 

internal Rayleigh  number ,iR while 

decreaseson increasing the values of  

mechanical anisotropic parameter , Taylor 
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number aT ,solute Rayleigh  number ,SRa

diffusivity ratio  and thermal anisotropic 

parameter  .
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 Appendix 

 

Latin symbols 

 
a  wave number 

d  depth of porous layer 

g   Acceleration due to gravity 

   Diffusivity ratio
S

Tz





  

Ra
T

 Thermal Rayleigh number 

T z
T

Tz

g TK d
Ra






  

Ra
S
 Solute Rayleigh number 

S z
S

Tz

g SK d
Ra






  

K     permeability  

T     temperature  

S     solute concentration 

T  Temperature difference across the 

porous layer  

S  Solute difference across the porous 

layer 

t  time 

p  reduced pressure  

q Fluid velocity (u,v,w)  

Pr
D

  Prandtl number 

2

D

T

d
Pr

k




  

R
i
 Internal Rayleigh number 

2

i

T

Qd
R


  

aT

  

Taylor number

2

2 z
a

K
T



 
  
 

 

Q  Internal heat source 

N
u
  Nusselt number 
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S
h
  Sherwood number  

(x,y,z)     Space co-ordinates 

 

Greek symbols 
 

T   
Effective thermal diffusivity 

     Tx Tzii jj kk    

Tx  Effective thermal diffusivity in x-

direction 

Tz  Effective thermal diffusivity in 

direction 

T   Coefficient of thermal expansion 

S   Coefficient of solute expansion 

1   Stress-relaxation time  

2   Strain-retardation time  

1   Relaxation parameter 12

Tz

d






 
 
 

 

2   Retardation parameter 22

Tz

d






 
 
 

 

0T   Reference temperature  

0S   Reference concentration  

   Growth rate  

   Dynamic viscosity of the fluid  

c   Effective viscosity of the fluid 

   Porosity 

   Heat capacities ratio 
 
 

p m

p f

c

c




 

   Kinematic viscosity 

0




 

   Fluid density  

0   Reference density 

 

 

Other symbols 

2

1   

2 2

2 2x y

 


 
 

2   

2 2 2

2 2 2x y z

  
 

  
 

 

Subscripts 
 

b  basic state  

c  critical  

0     reference value 

Superscripts 
 

’     perturbed quantity  

*     Dimensionless quantity 

osc  oscillatory 

st  stationary 

 


